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Principal Component Analysis (PCA)
How to project 2D data down to 1D?

Hervé Abdi and Lynne J. Williams. Principal component analysis. Wiley Interdisciplinary Reviews: Computational 
Statistics. 2010.

Note: axes are centered at the center of mass of the points and not at (0, 0)
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Simplest thing to try: flatten to one of the red axes

(We could of course flatten to the other red axis)
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Principal Component Analysis (PCA)
How to project 2D data down to 1D?

But notice that most of the variability in the data is not aligned with the 
red axes!

Most variability is along this 
green direction

Rotate!
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The idea of PCA actually works for 2D ➔ 2D as well
(and just involves rotating, and not “flattening” the data)
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The idea of PCA actually works for 2D ➔ 2D as well
(and just involves rotating, and not “flattening” the data)
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“flattening”

2nd green axis chosen to be 90° (“orthogonal”) from first green axis

How to rotate 2D data so 1st axis has most variance



PCA: The Unexplained Variability

1st PC

2nd PC

flatten to get 
first principal 
component 

(PC)

if we instead flatten 
along the 1st PC axis 
so that what remains 

is the 2nd PC axis

the spread 
along this 

purple axis is 
not explained 
by the 1st PC

By going from 2D to 1D, 
a 1D PCA model loses 

information

note that we are flattening along the 
direction of the 2nd PC axis so that 
what remains is the 1st PC axis information not retained 

by 1D PCA model



3D Dataset Example

http://setosa.io/ev/principal-component-analysis/



PCA in Higher Dimensions

• Finds top k orthogonal directions that explain the most 
variance in the data
• 1st component: explains most variance along 1 dimension

• 2nd component: explains most of remaining variance 
along next dimension that is orthogonal to 1st dimension

• …

• “Flatten” data by retaining only the top k dimensions 
(if k < original dimension, then we are doing dimensionality 
reduction)



Principal Component Analysis (PCA)

Demo



PCA reorients data so axes explain 
variance in “decreasing order”

➔ can “flatten” (project) data onto a 
few axes that captures most variance



Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAAGp8/Hea8UtE_1c0/s1600/
Blog%2B1%2BIMG_1821.jpg



2D Swiss Roll

PCA would just flatten this thing and 
lose the information that the data actually lives on 

a 1D line that has been curved!



Image source: http://4.bp.blogspot.com/-USQEgoh1jCU/VfncdNOETcI/AAAAAAAAGp8/Hea8UtE_1c0/s1600/
Blog%2B1%2BIMG_1821.jpg

PCA would squash down this Swiss roll 
(like stepping on it from the top) mixing 

the red & white parts
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2D Swiss Roll

This is the desired result



Manifold Learning
The dataset here is clearly 3D

Another example: Earth is approximately a 3D sphere, 
but zooming a lot on any point, around the point it’s 

approximately a 2D sheet
In general: if we have d-dimensional data where when you 

zoom in a lot, the data dimensionality is smaller than d, 
then the lower-dimensional object is called a manifold

Image source: “Head Pose Estimation via Manifold Learning” (Wang et al 2017)

But when we zoom in a lot on any point, 
around the point it looks like a flat 2D sheet!

• Manifold learning is nonlinear whereas PCA is linear 
(this will make more sense after we see code demos)

• We have the data’s high-dim. coordinates, but we want to find the 
low-dim. coordinates (on the manifold) ➜ this is manifold learning


